

# Thermo Profil Scanner

# application for **HEFE tube welding**

We eye Your welding Quality



# Je.

# Initial situation for high frequency welding

- the usually used nondestructive testing methods for welded seam control as eddy current examination and ultrasonic examination fails at cold fusion points (bond seams).
- with the newly developed measuring of the heat field via ThermoProfilScanner, these and all other welding irregularities can also be recognized at welding speeds up to 180 m/min.

The visualization and parameterization of the heat field enabled a process control of the welding plant for an exact and reproducible welded seam quality.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dreite<br>N.(.)                                              | p=_p===== |               |            |      |      |                                                                                                         |                                 |           |      |                                                                   | T. 17 Mar 1 |       |       |       |       |       | ne in |       |      |      |                            |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|---------------|------------|------|------|---------------------------------------------------------------------------------------------------------|---------------------------------|-----------|------|-------------------------------------------------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|------|------|----------------------------|--------|
| 1150       Original Temperature       1100       1400         1100       Postion       Maxwell       100         1000       Postion       Maxwell       100         1000       Postion       Maxwell       100         1000       Postion       Maxwell       100         1000       Postion       100       100 | 111100044000<br>00000000000000000000000000                   | 1000      | 2000          | 3000       | 4000 | 5000 | 5000                                                                                                    | 7000                            | 8000      | 9000 | 10000                                                             | 11000       | 12000 | 13000 | 14000 | 15000 | 16000 | 17000 | 18000 | 1900 | 0 20 |                            | 21 000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.150<br>1.100<br>1.000<br>1.000<br>950<br>950<br>750<br>700 |           | original Temp | _ <b>\</b> |      |      | Dreite     Position     Abweich     Maximat     Unsymm     Uhsegral     tomp, hoc     22     with strok | terre<br>emi<br>ette<br>o linos | ert<br>et |      | 1 150<br>1 100<br>1 050<br>950<br>950<br>950<br>950<br>750<br>700 |             |       |       | 10    |       |       |       |       |      |      | acalculat<br>snfig<br>lose | •      |



# **Disadvantages of common test methods**

#### **Ultrasonic system**



#### pyrometer

finds out the average Temperature in a measuring spot



- Cold fusion points are not recognized, because there is no edge, where an ultrasound signal can be reflected.
- Not usable to control the process
- used for the process control, but the results partly are not reliable
- because there is no homogeneous thermal field, the measured temperature depends of the place and the temperature distribution in the welded seam
- It is not used for the fault detection

#### Eddy current system

induce eddy currents into the basic material and judges disturbances in the current course



- cold weldings are not recognized because there is no deflection of the magnetic field
- Not usable to control the process



# The view in the welded seam



While welding materials they are melted by a local application of energy and are changed in the structure.

The correct heat input as well as the undisturbed heat propagation are essential characteristics to judge the welded seams.

The human eye cannot register thermal radiation. The visible part of the glowing seam outshines the warmth information completely.

Therefore a technique is necessary, which can measure this temperature information durably, highly precise and **reproducible** under production conditions (pollution, smoke..). The same temperature field guaranteed the same welding quality. For that reason and with 18 years experience the TPS was developed and patented.





# principle of operation - ThermoProfilScanner



HKS-Prozesstechnik GmbH

#### 1.150 1.100 1.000 950 900 850 800 5 10 15 20

temperature profile across the seam

The Thermoprofilscanner is constantly capturing a thermo profile

#### across the welding seam.

Because of the continuous movement of the pipe you get a thermal picture of the complete welded seam.

#### Technical data:

- Work distance 15 to 200 mm
- Scan frequency >= 400 Profile/s and shutter speeds of a single line of 50 µs allows a welding speed of 180 m/min.
- technical characteristics allows a long-term-work for HFI-welding (great heat, smoke, water vapor, water drops etc.):
  - ✓ glass free design
  - ✓ gas curtain
  - anti spatter concept
  - integrated water cooling
  - ✓ splash guard (optional)



# Extremely robust action directly on the welding point



The heat signature is captured after solidification of the welding seam, before the seam is cooled off.

In this phase disturbed areas in the temperature course are considerably recognizable.

Depending on the application this can be 5 mm to 300 mm behind the welding point. The sensor can withstand most extreme working conditions and works reliable in great heat, dirt, welding spatters, water vapor, cooling liquid drops...



example conductive HF-welding



# New possibilities to control the seam

The temperature profiles are processed and measured *in real time.* 

Some important parameters are:

- breadth of the thermal field above a specific temperature
- position of the center of the heat
- maximum temperature
- symmetry ...

Welding irregularities compared to an OK seam are recognized and signalized as deviations of the temperature profiles.

The features of the temperature profiles (width, position ...) can be taught and monitored by thresholds (envelopes) like other parameter.







# ThermoProfilScanner as a component of the monitoring system WeldQAS





# **Connection schema in a high frequency welding plant**



HKS-Prozesstechnik GmbH

HKS PROZESSTECHNIK

# **Method** of operation of the TPS

- 1. The ThermoProfilScanner is capturing the temperature over the welding joint and is sending the data to the WeldQAS-device.
- 2. The WeldQAS-device is calculating for each line the attributes of the profile (width and position of the heat field, symmetry and max. temperature.)
- 3. The heat images are displayed simultaneous visually by the WeldQAS, stored and compared with programmed set values.
- 4. By recognizing violations of limit values the unit detects welding irregularities and their position within the pipe.
- 5. The error signal is generated immediately or can be buffered to mark the defective with a marking spray unit.
- 6. The WeldQAS-device is storing all data pertaining to the pipes, which will be numbered, and can be synchronized with a saw signal.
- 7. The data are stored in a data base and are displayed in a pipe monitor program.

# WeldQAS





"Tube" monitor



HKS-Prozesstechnik GmbH



# example 1 Conductive HF-welding



#### **Application Data TPS**

Distance to torch : **100 mm** Working distance: **60 mm** Gas purge Shield gas: **3 l/min** Welding speed: **80 m/min** Water cooling Pipe dimensions: **13 x 2,5 mm** HFI-Generator 250 kW – **conductive HF-welding** Pipes are spooled to coil

#### Task

- Realizing a set up help for optimal welding parameters based on the heat signature
- Recogognition of visible and invisible welding faults, cold joints, and excessive root penetration.
- Color marking faults
- Re-place Eddy Current Detection Systems since these can not detect these faults



Schleßen **W** 247 kW i 🐹 1 0 8,1 10,4<sub>px</sub> 10,4 % 15730 1.01.033 ☞ 81 m/m 242 m 🚺 -3 % 00:11 Kennzeichnung 47435-01 Record <u>ک</u> Auftrag test2 Frequenz 101.3 Note

Work monitor with actual seam evaluation and heat signature

#### **Captured are:**

- Generator output
- Band position and -speed



Heat signature of a 21 m tube

#### Using the thermal field are calculated:

- Welding seam position
- Width of temperature zone
- Symmetry of heat field



### Special features for seam pipe welding

| 🕂 F2 Arbeil | ten 🛛 🛵 F | 3 Prüfprogram | n 🚸 F4 <u>A</u> ufzei | chnur F5 Rohrmonitor Extras 14:09:28 Beenden                         |
|-------------|-----------|---------------|-----------------------|----------------------------------------------------------------------|
|             |           |               |                       | Schließen                                                            |
|             |           |               |                       | 12,75 m 🧧 🦰 15,75 m                                                  |
| Zeit        | Rohr      | Aufz.         | Pos.                  | Bewertung                                                            |
| 13:59:01    | 6         | 62            | 149,7 m               |                                                                      |
| 13:53:06    | 5         | 61            | 143,7 m               |                                                                      |
| 13:47:12    | 4         | 60            | 137,7 m               |                                                                      |
| 13:45:42    | 3         | 59            | 131,7 m               |                                                                      |
| 13:39:47    | 2         | 58            | 130,1 m               |                                                                      |
| 13:33:54    | 1         | 57            | 124,1 m               | Measurement of the running tube position and                         |
| 13:28:00    | 4137      | 56            | 118,1 m               | allocation wolding faults to wolding position                        |
| 13:27:17    | 4136      | 55            | 112,0 m               |                                                                      |
| 13:26:17    | 4135      | 54            | 111,3 m               | Marking of faulty tube sections, when these                          |
| 13:20:23    | 4134      | 53            | 110,3 m               | reach marking position                                               |
| 13:14:29    | 4133      | 52            | 104,3 m               |                                                                      |
| 13:08:35    | 4132      | 51            | 98,2 m                | <ul> <li>Data allocation after tube separation to one set</li> </ul> |
| 13:02:42    | 4131      | 50            | 92,2 m                | of data for each tube including heat images                          |
| 12:56:47    | 4130      | 49            | 86,2 m                |                                                                      |
| 12:50:54    | 4129      | 48            | 80,2 m                | <ul> <li>Integrated network functionality</li> </ul>                 |
| 12:44:59    | 4128      | 47            | 74,1 m                |                                                                      |
| 12:39:05    | 4127      | 46            | 68,1 m                |                                                                      |
| 12:33:11    | 4126      | 45            | 62,1 m                |                                                                      |
| 12:27:18    | 4125      | 44            | 56,1 m                |                                                                      |
| 12:21:23    | 4124      | 43            | 50,0 m                |                                                                      |





Graphic display of the last 25 tubes in **tube monitor** application

### **Detecting cold fusion points**



Width of heat filed and learned thresholds values.

# Heat field when fault through cold fusion joint

When the melting temperature is not reached, the temperature is falling in the joining zones.

The sensor is calculating the heat field width via a set temperature threshold. Cold welding joints can be clearly seen in the diminishing heat field width.



# Welding capacity adjusted wrongly



### Thermal field at too highly adjusted welding capacity

A result of that are failures like big excess penetrations, spatters, burnings.

The breadth of the thermal field shows the heat input is too big.





### **Comparative representation**

Thermal field of an i.O. - seam compared to a seam with irregular thermal field.



# Tasks

- Detection of cold fusion points , (bond seams), which the integrated eddy current system and ultrasonic system could not recognize..
- Up till now only a destroying punctual testing of materials was possible. Pipes which got leaky later at the costumer could not be sorted out.
- Warranty of a constant quality based on the thermal field

#### **Application Data TPS**

Distance to torch : **50 mm** Sampling rate: 2**00 Hz** Working distance: : **120 mm** Gas purge shield gas : **15 l/min** Welding speed up to **60 m/min** Water cooling





### failure in the adaption of energy power

steel - tube 13\*2,2 mm, 5,6 m length



to high energy caused a very strong on-heating (for the duration of 0,85 s. The temperatures are higher and the heat field is considerably expanded. (further zoom next page)

(blue mark) cold fusion points (0,3s long)

These faulty sections are recognized and marked by the TPS and the additional monitoring system.

HKS ROZESSTECH

# Example for the sensibility of the thermal measuring at the seam



#### Red mark

The area zoomed with to high energy (from previous foil) has a cold point at the end

#### (blue mark)

Cold point (energy fall-off) for the duration of 40 ms .

These faulty sections are recognized and marked by the TPS and the additional monitoring system.



# **Comparison of band qualities**

steel - tube 13\*2,2 mm



Regular thermal field

Irregular thermal field because of up- and downturns (fluctuations?) of the band material



# Thermal field while burst open at the junction of two coils

steel - tube 13\*2,2 mm







# **Examples for mounting of the TPS**



HFI – process



















# www.hks-prozesstechnik.de

### Many thanks for your interest

For further questions please do not hesitate to contact us:

Thomas Köhler Tel: 0345 / 68309 – 27 email: koehler@hks-prozesstechnik.de



Quality by innovation